23 research outputs found

    Time-Delay Switch Attack on Networked Control Systems, Effects and Countermeasures

    Get PDF
    In recent years, the security of networked control systems (NCSs) has been an important challenge for many researchers. Although the security schemes for networked control systems have advanced in the past several years, there have been many acknowledged cyber attacks. As a result, this dissertation proposes the use of a novel time-delay switch (TDS) attack by introducing time delays into the dynamics of NCSs. Such an attack has devastating effects on NCSs if prevention techniques and countermeasures are not considered in the design of these systems. To overcome the stability issue caused by TDS attacks, this dissertation proposes a new detector to track TDS attacks in real time. This method relies on an estimator that will estimate and track time delays introduced by a hacker. Once a detector obtains the maximum tolerable time delay of a plant’s optimal controller (for which the plant remains secure and stable), it issues an alarm signal and directs the system to its alarm state. In the alarm state, the plant operates under the control of an emergency controller that can be local or networked to the plant and remains in this stable mode until the networked control system state is restored. In another effort, this dissertation evaluates different control methods to find out which one is more stable when under a TDS attack than others. Also, a novel, simple and effective controller is proposed to thwart TDS attacks on the sensing loop (SL). The modified controller controls the system under a TDS attack. Also, the time-delay estimator will track time delays introduced by a hacker using a modified model reference-based control with an indirect supervisor and a modified least mean square (LMS) minimization technique. Furthermore, here, the demonstration proves that the cryptographic solutions are ineffective in the recovery from TDS attacks. A cryptography-free TDS recovery (CF-TDSR) communication protocol enhancement is introduced to leverage the adaptive channel redundancy techniques, along with a novel state estimator to detect and assist in the recovery of the destabilizing effects of TDS attacks. The conclusion shows how the CF-TDSR ensures the control stability of linear time invariant systems

    Sensorimotor control: computing the immediate future from the delayed present

    Get PDF
    Background The predictive nature of the primate sensorimotor systems, for example the smooth pursuit system and their ability to compensate for long delays have been proven by many physiological experiments. However, few theoretical models have tried to explain these facts comprehensively. Here, we propose a sensorimotor learning and control model that can be used to (1) predict the dynamics of variable time delays and current and future sensory states from delayed sensory information; (2) learn new sensorimotor realities; and (3) control a motor system in real time. Results This paper proposed a new time-delay estimation method and developed a computational model for a predictive control solution of a sensorimotor control system under time delay. Simulation experiments are used to demonstrate how the proposed model can explain a sensorimotor system?s ability to compensate for delays during online learning and control. To further illustrate the benefits of the proposed time-delay estimation method and predictive control in sensorimotor systems a simulation of the horizontal Vestibulo-Ocular Reflex (hVOR) system is presented. Without the proposed time-delay estimation and prediction, the hVOR can be unstable and could be affected by high frequency oscillations. These oscillations are reminiscent of a fast correction mechanism, e.g., a saccade to compensate for the hVOR delays. Comparing results of the proposed model with those in literature, it is clear that the hVOR system with impaired time-delay estimation or impaired sensory state predictor can mimic certain outcomes of sensorimotor diseases. Even more, if the control of hVOR is augmented with the proposed time-delay estimator and the predictor for eye position relative to the head, then hVOR control system can be stabilized. Conclusions Three claims with varying degrees of experimental support are proposed in this paper. Firstly, the brain or any sensorimotor system has time-delay estimation circuits for the various sensorimotor control systems. Secondly, the brain continuously estimates current/future sensory states from the previously sensed states. Thirdly, the brain uses predicted sensory states to perform optimal motor control

    A practical guideline for intracranial volume estimation in patients with Alzheimer’s disease

    Get PDF
    Background Intracranial volume (ICV) is an important normalization measure used in morphometric analyses to correct for head size in studies of Alzheimer Disease (AD). Inaccurate ICV estimation could introduce bias in the outcome. The current study provides a decision aid in defining protocols for ICV estimation in patients with Alzheimer disease in terms of sampling frequencies that can be optimally used on the volumetric MRI data, and the type of software most suitable for use in estimating the ICV measure. Methods Two groups of 22 subjects are considered, including adult controls (AC) and patients with Alzheimer Disease (AD). Reference measurements were calculated for each subject by manually tracing intracranial cavity by the means of visual inspection. The reliability of reference measurements were assured through intra- and inter- variation analyses. Three publicly well-known software packages (Freesurfer, FSL, and SPM) were examined in their ability to automatically estimate ICV across the groups. Results Analysis of the results supported the significant effect of estimation method, gender, cognitive condition of the subject and the interaction among method and cognitive condition factors in the measured ICV. Results on sub-sampling studies with a 95% confidence showed that in order to keep the accuracy of the interleaved slice sampling protocol above 99%, the sampling period cannot exceed 20 millimeters for AC and 15 millimeters for AD. Freesurfer showed promising estimates for both adult groups. However SPM showed more consistency in its ICV estimation over the different phases of the study. Conclusions This study emphasized the importance in selecting the appropriate protocol, the choice of the sampling period in the manual estimation of ICV and selection of suitable software for the automated estimation of ICV. The current study serves as an initial framework for establishing an appropriate protocol in both manual and automatic ICV estimations with different subject populations

    A probabilistic approach for pediatric epilepsy diagnosis using brain functional connectivity networks

    Get PDF
    Background The lives of half a million children in the United States are severely affected due to the alterations in their functional and mental abilities which epilepsy causes. This study aims to introduce a novel decision support system for the diagnosis of pediatric epilepsy based on scalp EEG data in a clinical environment. Methods A new time varying approach for constructing functional connectivity networks (FCNs) of 18 subjects (7 subjects from pediatric control (PC) group and 11 subjects from pediatric epilepsy (PE) group) is implemented by moving a window with overlap to split the EEG signals into a total of 445 multi-channel EEG segments (91 for PC and 354 for PE) and finding the hypothetical functional connectivity strengths among EEG channels. FCNs are then mapped into the form of undirected graphs and subjected to extraction of graph theory based features. An unsupervised labeling technique based on Gaussian mixtures model (GMM) is then used to delineate the pediatric epilepsy group from the control group. Results The study results show the existence of a statistically significant difference (p \u3c 0.0001) between the mean FCNs of PC and PE groups. The system was able to diagnose pediatric epilepsy subjects with the accuracy of 88.8% with 81.8% sensitivity and 100% specificity purely based on exploration of associations among brain cortical regions and without a priori knowledge of diagnosis. Conclusions The current study created the potential of diagnosing epilepsy without need for long EEG recording session and time-consuming visual inspection as conventionally employed

    Blockchain Technology Innovations

    No full text
    Digital world has produced efficiencies, new innovative products, and close customer relationships globally by the effective use of mobile, IoT (Internet of Things), social media, analytics and cloud technology to generate models for better decisions. Blockchain is recently introduced and revolutionizing the digital world bringing a new perspective to security, resiliency and efficiency of systems. While initially popularized by Bitcoin, Blockchain is much more than a foundation for crypto currency. It offers a secure way to exchange any kind of good, service, or transaction. Industrial growth increasingly depends on trusted partnerships; but increasing regulation, cybercrime and fraud are inhibiting expansion. To address these challenges, Blockchain will enable more agile value chains, faster product innovations, closer customer relationships, and quicker integration with the IoT and cloud technology. Further Blockchain provides a lower cost of trade with a trusted contract monitored without intervention from third parties who may not add direct value. It facilitates smart contracts, engagements, and agreements with inherent, robust cyber security features. This paper is an effort to break the ground for presenting and demonstrating the use of Blockchain technology in multiple industrial applications. A healthcare industry application, Healthchain, is formalized and developed on the foundation of Blockchain using IBM Blockchain initiative. The concepts are transferable to a wide range of industries as finance, government and manufacturing where security, scalability and efficiency must meet

    A Secure Control Design for Networked Control Systems with Linear Dynamics under a Time-Delay Switch Attack

    No full text
    Networked control systems (NCSs) are designed to control and monitor large-scale and complex systems remotely. The communication connectivity in an NCS allows agents to quickly communicate with each other to respond to abrupt changes in the system quickly, thus reducing complexity and increasing efficiency. Despite all these advantages, NCSs are vulnerable to cyberattacks. Injecting cyberattacks, such as a time-delay switch (TDS) attack, into communication channels has the potential to make NCSs inefficient or even unstable. This paper presents a Lyapunov-based approach to detecting and estimating TDS attacks in real time. A secure control strategy is designed to mitigate the effects of TDS attacks in real time. The stability of the secure control system is investigated using the Lyapunov theory. The proposed TDS attack estimator’s performance and secure control strategy are evaluated in simulations and a hardware-in-the-loop environment
    corecore